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ABSTRACT 

This paper attempts t o  determine under what conditions horizontal shear in the mean zonal flow can provide 
the initial source of energy for the traveling disturbances of low latitudes. A three-zone barotropic model is constructed 
in order to examine the stability of an idealized mean zonal current. The width and total wind shear associated with 
this mean current are varied. The form of growing disturbances and their amplification rates are found. 

Results obtained by numerical integration for this basic flow are similar to  those found previously with the three-zonc 
model. I n  discussing his easterly wave model, Yanai indicates a basic flow which has a total wind shear of about 8 m 
sec-l occurring over approximately 6' of latitude. Results obtained for a basic flow with these characteristics show 
that the fastest growing wave has a wavelength near 2500 km and an e-folding time of about 7 days. 

I A stability analysis is also carried out for a basic flow which has a hyperbolic tangent variation with latitude. 

1. INTRODUCTION 

One of the important unsolved problems in tropical 
meteorology is the formation of wavelike disturbances 
which can, under the right conditions, later develop into 
hurricanes. These disturbances propagate westward and 
of ten appear to have cold cores in the upper levels (Riehl 
1954, Yanai 1961~) .  They are particularly noticeable 
along the intertropical convergence zones in the eastern 
Pacific and off the west coast of Africa where they seem 
to occur periodically with a spacing of about 1500-2000 
km between disturbances. According to Sadler (1963), 
many of these disturbances in the eastern Pacific form 
along a wind-shear zone located near 10°-15" N. 

If these disturbances have cold cores, it does not appear 
likely that they are maintained by a conversion of poten- 
tial energy into kinetic energy. Yanai (1961b, 1964) has 
therefore suggested that they receive their energy from 
horizontal shear in the zonal flow and that the cold cores 
result from dynamically forced lifting associated with 
weak horizontal temperature gradients. That such a 
barotropic transfer of energy takes place is plausible when 
it is remembered that most of these disturbances occur 
along zones where strong horizontal shear exists. As 
suggested by Charney (1963), such shear can be expected 
across an ITCZ displaced from the Equator where air of 
differing absolute angular momentum converges. 

However, there is also evidence that some disturbances 
are maintained by a baroclinic transformation of energy 
associated with the release of latent heat. Riehl (1967) 
discusses such a disturbance in the Caribbean. Under- 
neath the altostratus or leaning cumulonimbus the air 
is cool and sinking, while in the clouds the air is warm and 
rising. The general circulation numerical calculations of 
Manabe and Smagorinsky (1967) also showed that 
tropical disturbances were maintained by the release of 
latent heat. Furthermore, Yanai (1968) states that the 
conversion of potential energy into kinetic energy in the 
upper troposphere cannot be ruled out for a synoptic case 
in the Caribbean. This case is similar in many respects 

to the case he previously discussed (Yanai 1961a), which 
apparently had a cold core in the upper levels. 

Thus, the dynamics involved in the formation and main- 
tenance of tropical disturbances is still an unsettled 
question. It is entirely possible that different disturbances 
are formed by different dynamical mechanisms. Of the 
different possible mechanisms, one can include 1) a baro- 
tropic transformation of energy associated with shear in 
the mean flow, 2) a baroclinic transformation of energy 
associated with release of latent heat, and 3) influences 
from middle latitudes. Undoubtedly, other possible mech- 
anisms exist also. The purpose of the present investigation 
is to examine 1) above by means of a linear stability 
analysis. Although such an analysis greatly oversimplifies 
the actual atmospheric problem, it is hoped that the pres- 
ent results will give some indication as to when the baro- 
tropic transformation of kinetic energy from the basic 
flow to the disturbances can be dynamically important. 

A barotropic stability analysis is carried out for two 
different forms of the mean flow. In the first case, the 
basic flow is split up into three latitude belts, the abso- 
lute vorticity being constant in each latitude zone. The 
width and total wind shear associated with this basic 
flow are varied. The form of growing disturbances and 
their amplification rates are obtained analytically. 

The second type of basic flow studied has a hyperbolic 
tangent variation with latitude. The form of disturbances 
and their amplification rates are obtained by numerical 
integration. When both types of the basic flow have a 
similar latitudinal variation, the results of the stability 
analysis are similar. The hyperbolic tangent basic flow 
is used to simulate the mean flow given by Yanai (1961b) 
in discussing his easterly wave model. When this basic 
flow has a total wind shear of 8 m sec-' occurring over 
spproximately Go of latitude, the most unstable disturb- 
ance has a wavelength near 2500 km and an e-folding 
time of about 7 days. 

In a recent investigation, Nitta and Yanai (1968) 
obtained results from their barotropic stability analysis 
qualitatively similar to  those obtained here for lianai's 
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mean flow. The mean wind profiles used in their analysis 
were obtained from mean monthly data a t  or near the 
surface in the Marshall Islands. For the most unstable 
disturbances, they report e-folding times of 5.2 and 10 
days for two different mean wind profiles. In  both cases, 
the most unstable wavelength is in the range 2000;-3000 
km, and the disturbance has a southwest-northeast 
orientation. 

In  a very recent paper, Nitta and Yanai (1969) discuss 
in detail the results of their stability analysis for the 
June 1958 mean flow at the surface. For this case, the 
the most unstable wavelength is slightly longer than 2000 
km, and the e-folding time is 5.2 days. The stream-function 
pattern is very similaz to that found here. The primary 
difference between their results and the present results 
is that they have no long-wave cutoff for the unstable 
disturbances. It was found in the present analysis for 
Yanai's mean flow that the boundary a t  the Equator can 
make a significant change in the results. With walls a t  
the Equator and 20" N. (as Nitta and Yanai have), it 
was found that the wave number of the marginally stable 
wave was reduced to half the value when no walls were 
present. Thus, the long waves may be unstable in Nitta 
and Yanai's analysis partly because of the wall at  the 
Equator. Also, the fact that the mean flow has a some- 
what different form may be a factor. 

2. THE THREE-ZONE MODEL 
I n  this section we construct a model consisting of three 

latitude belts in order to  study the stability of infinitesi- 
mal disturbances superimposed on a basic current. This 
basic current is intended to simulate the mean flow 
associated with an ITC zone displayed to the north of 
the Equator. Such ITC zones are observed during the 
summer in the eastern Pacific and off the west coast 
of Africa. These are also the regions where many dis- 
turbances occur. The most important feature of the mean 
flow associated with such an ITC zone is the presence of 
a strong horizontal wind shear occurring over a few 
degrees of latitude. Since little is known about the exact 
form of bhese winds, an idealized model will be sufficient 
for present purposes. This model is similar to one ex- 
amined by Queney (1952). Since his primary interest was 
in large-scale disturbances, his analysis was carried out 
on a sphere. The present analysis uses a beta plane. 

The total flow is assumed to be horizontal, nondivergent, 
and barotropic. The present model, consisting of three 
zones (latitude belts), is shown in figure 1. Each zone has 
constant absolute vorticity so that the absolute vorticity 
is discontinuous between the different zones. The northern 
and southern zones are assumed to be infinite in extent. 
The central zone has a finite width a and is the one in 
which the strong shear in the mean flow takes place 
The values of absolute vorticity for the southern, central, 
and northern zones are denoted respectively by ys, Fc, 
and fN. The value of the basic flow at the common 

FIGURE 1.-Three-zone model. The discontinuous absolute vorticity 
is indicated by the dashed lines, and the mean current U is 
shown by the solid line. The width of the central zone is a. 

boundary of the central and southern zones is US. Like- 
wise, the value of the basic flow at the common boundary 
of the northern and central zones is UN. The southern 
boundary of the central zone is held fixed a t  10' N., and 
the value of UN is given as -8 m sec-'. The other param- 
eters are varied in order to  determine their importance 
to the stability problem. 

In  this way, a maximum amount of information can be 
obtained as to what parameters are important in de- 
termining the stability of disturbances. The two 
parameters held fixed cannot seriously change the charac- 
teristics of the stability problem. The specific value of 
UN is unimportant since the stability of the basic flow 
is determined by its horizontal variation and not by its 
specific value at  one point. Likewise, the exact latitude 
of the southern boundary of the central layer is unim- 
portant, since @ (the derivative of the Coriolis parameter 
f with latitude) is insensitive to small changes of latitude 
near 10' N. It is /3 and not f which is important to the 
present stability problem. Thus, we shall consider the 
variation of those parameters in the present model that 
are significant with respect to the stability of disturbances. 

We now obtain the solution for the perturbation 
motion. A Cartesian coordinate system is used with the 
x-axis directed toward the east and the y-axis directed 
toward the north. The origin is assumed to be a t  10° N. 
Since the flow is nondivergent, a stream function can be 
defined by 

where u and v are the disturbance velocities directed 
along the x-axis and y-axis, respectively. Since we are 
dealing with perturbed flow, we may assume that + is of 
the form 

u= -a+/ay, v=a+/ax (1) 

= e i L  (Z-CZ) 4(y) (2) 

where k is the wave number and c is the phase velocity, 
which is complex for unstable waves. 

373-199 0-70-5 
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The stream function J/ must satisfy the vorticity 
equation in each of the three zones. In  addition, the 
kinematic and dynamic boundary conditions must be 
satisfied on the two boundaries between the three zones. 
Since the absolute vorticity is a constant in each zone, 
the form of the vorticity equation in any zone is written 

(U-c) (d/dz)V$=O (3) 
where U is the basic zonal current, V2 is the Laplacian 
operator, and VY, is the perturbation vorticity. The 
phase velocity c is complex for the solutions of interest 
(amplified waves) so that the perturbation vorticity must 
be zero in the interior of each zone. Thus, the following 
forms for solutions in the three zones may be obtained: 

QS(Y) =hkU - m <y 50 ,  (4 a) 

&(y) =BeKU+ Ce-ku 0 I y l a ,  (4b) 

QN(Y) =De+' a 5 ~ 5  (44 
and 

where the subscripts S, C, and N represent respectively 
the southern, central, and northern zones where the 
solutions for Q are valid. Equations (4a) and (4c) already 
contain the requirement that the solutions damp out as 
!/+&a. 

Since the basic velocity U is continuous between the 
different zones, the kinematic boundary condition at  
both internal boundaries is that the meridional velocity 
be continuous. The dynamic boundary condition is that 
the pressure be continuous across these boundaries. The 
perturbation pressure required for this boundary condi- 
tion is obtained from the zonal equation of motion. For 
any of the thkee zones, the perturbation pressure p takes 
the form 

where is the basic vorticity. 

tions give respectively 

and 

At y=O, the kinematic and dynamic boundary condi- 

A=B+C (54  

(5b) k (  US-c) (B- C-A) +&=O 
- -  

where Ao={c-(Ts. Likewise a t  y=a we find: 

D= Be2ka+ C (54 

(5d) 

where A,=&-fc. It should be noted here tha t& is 
determined by the mean Coriolis parameter 7 in the 
central zone and the wind shear across this zone, that is, 

(54 

k ( U, - c)  ( --D - Beaka + 6) + D A  = 0 

E2 =f- ( UN - Us) /a. 

For a linearly varying j ,  the value of f is equal to the 
value off at  the midpoint of the zone. 

We now have four homogeneous equations (5a-5d) 
for the four constants A, B,  C, and D. In order for a 
nontrivial solution to exist, the determinant of the 

coefficients must vanish. This condition gives a quadratic 
equation for the phase velocity c. The solution for c is: 

and 

k(Us-UA-)+, 1 ( A I - A o ) ] + A I A o e - m .  (6b) 

It is clear that c is complex only if R is negative. Thus 
the form of R shows that a necessary condition for unstable 
waves is that A,  and A, be of opposite signs. In a fluid for 
which the absolute vorticity has a continuous variation, 
the necessary condition for instability is that the gradient 
of absolute vorticity change its sign somewhere in the 
fluid. Since Ao=Tc-'Ss and Al=FN-Sc, the condition that 
these be of opposite signs is a counterpart of the necessary 
condition for instability in a continuous flow field. 
Queney (1952) obtained the same necessary condition 
for instability as in the present study for his double-jet 
case. 

In  the present analysis for which UTs>VN and ?c>?s, 
the necessary condition for unstable waves that AI  .and A. 
be of opposite signs is also a sufficient condition for 
instability. This follows from (6b), since with Us- UN>O 
and A,,=& Fs>O it can be seen that the term in brackets 
will vanish for some vdue of k when Al and A. are of 
opposite signs. 

3. RESULTS OBTAINED FROM THE 
THREE-ZONE MODEL 

I n  this section we discuss the solutions for the perturbed 
flow in the three-zone model. We first consider a basic 
flow that is assumed to be typical of conditions undeT 
which tropical disturbances may develop. Then we vary 
the parameters Us, a, f,, and fN to determine how the 
stability of disturbances is changed by changing the form 
of the basic flow. In  this way it will be shown clearly 
which properties of the basic flow are important with 
respect to  the stability of disturbances. The different forms 
of the basic flow studied are shown as eight cases in table 1. 
As mentioned previously, UN is set equal to  -8 m sec-' 
for all eight cases, The first case will be used as a means of 
comparison for the remaining cases. 

FOI this case we take the width a of the region of strong 
shear to be 3" of latitude. The total wind shear across this 
region is 13 m sec-', with Us being 5 m sec-I and UN 
being -8 m sec-'. The value of ss is taken as equal to  
the value of the Coriolis parameter .f at 3' N. (0.7633X 

sec-'), and the value of FN is taken as the value of .f 
at 13" - N. (0.3281X10-4 sec-I). In  this and most of the 
cases, lN was chosen so that dU/dy is zero at  the southern 
boundary of the northern region. Figure 1 shows this 
type of zonal flow. The value of FC can be calculated from 
(5e) .  Assuming that f is linear in the central regign, we 
find fc =0.6804X sec-'. 
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TABLE 1.-Values of parameters used for each different basic flow 

- 
Case US a r.9 I R 
no. (m sec-1) (" lat) (SeC-1) (sec-1) 

f a t  3' N. 

fat  6" N. 
f a t  3' N. 

f a t  13" N. 

fa t  12" N. 
f a t  14' N. 
f a t  16' N. 
f a t  13" N. 
f a t  17" N. 

The results for case 1 are shown in table 2. The values 
of e, and e ,  were calculated from (ea) and (6b) for the 
12 values of the wavelength X shown in the first column 
of the table. The quantities AMP and T are defined by 
by AMP=k c, and T=l/kc,. Physically, AMP is an ampli- 
fication factor and T i s  the time it takes for a disturbance 
to amplify by a factor of e. The stable waves have two 
real phase velocities for each wavelength. For the unstable 
waves the two values of c are complex conjugates with 
one wave amplifying and the other damping. Only the 
amplifying modes are shown in table 2. 

The data in this table show that the long and the short 
waves are stable. For the unstable waves, c, is a linear 
function of the wavelength X as can be inferred from the 
form of (sa). The most unstable disturbance has a wave- 
length of 2000 km and amplifies by a factor of in 1.59 
days. I t  travels westward with a phase speed of 3.50 
m sec-'. 

The stream function for this unstable wave is shown in 
figure 2. The coordinates cover one wavelength in x and 
10" of latitude in y. The basic flow is shown on the right. 
The streamlines are drawn at  equal intervals on an arbi- 
trary scale. The maximum amplitude of the disturbance 
occurs at  10" latitude, which is the boundary between 
the southern and central regions. The letters C and A 
represent the primary centers of cyclonic and anticy- 
clonic vorticity. Secondary centers of vorticity are at  
the boundary of the central and northern regions. Note 
that for the three-zone model all of the disturbance 
vorticity occurs along the two boundaries of the central 
region. 

This figure shows that the waves have a southwest- 
northeast orientation, which implies a northward transfer 
of momentum. That the disburbance gives such a transfer 
of momentum could be anticipated on general grounds. I n  
this barotropic model, the total kinetic energy and the 
mean momentum of the zonal flow are conserved. The 
growing wave obtains its kinetic energy at  the expense of 
the zonal kinetic energy. It is readily seen that for a zonal 
flow with a latitudinal variation, as in figure 2, there must 
be a northward transfer of momentum for the zonal flow 
to lose kinetic energy but conserve mean momentum. 

We now consider the results for the remaining seven 
cases shown in table 1.  For these cases, calculations were 

TABLE 2.-Results for case 1. In  this table T i s  the e-folding time i n  
days and AMP i s  the inverse of T .  

x C, e i  AMP 
(W (m sec-1) (m sec-1) (day-9 

500 

loo0 

1250 

1500 
1750 
Moo 
2250 
2500 
2750 
3000 
3500 
4000 

2.60 
-6.60 

0.16 
-5.16 
-1.24 
-4.27 
-3. Do 
-3.25 
-3.50 
-3.75 
-4. M) 

4.25 
-4.51 
-5.01 
-4.83 
-6.19 

0 

0 

0 

1. 11 
1.93 
2.32 
2.52 
2.58 
2.54 
2.41 
1.83 
0 

0 

0 

0 

0.401 
,600 
.a30 
.@I7 
.561 
,502 
,436 
.?a3 

0 

2. 50 
1.67 
1.59 
1.65 
1. 78 
1. 99 
2.29 
3.53 

I 1 
0 0.5 1.0 1.5 2.0 -5 0 5 

X IO'km U m/sec 

FIGURE 2.-Disturbance stream function for case 1 with X=2000 
km. The primary centers of cyclonic and anticyclonic vorticity 
are marked by C and A. The dashed line shows where the meri- 
dional velocity I) vanishes. The basic flow is shown on the right. 

carried out for the wavelengths shown in table 2. The 
most unstable wavelength, as well as c,, e,, AMP, and T 
for this wavelength, are shown in table 3 for all eight cases. 

Cases 2 and 3 are the same as case 1 except that Vsis 
zero and 10 m sec-', respectively. A comparison of the 
amplification rates for the first three cases is shown in 
figure 3. Case 1 is shown as the solid line. It is seen that 
increasing Us (and thus increasing the total shear across 
the central layer) increases the maximum amplification 
significantly. Also, the increase in shear leads to an 
increase in the wavelength of maximum amplification. 
Both of these changes seem t o  vary in a linear relationship 
with Us. 

We next determine the effect upon the growth rates of 
disturbances of varying the width of the central zone. 
In  cases 4, 5, and 6, the width of the central region is 2", 
4", and 6" of latitude, respectively. Otherwise, these cases 
are the same as case 1 with the value of the basic vorticity 
in the northern zone being set equal to the value of the 
Coriolis parameter at the southern boundary of this zone. 
The amplification rates as a function of wavelength are 
plotted in figure 4 for cases 1,  4, 5, and 6. It is readily 
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TABLE %-Data for the most unstable wavelengths for all eight cases 

Case h (km) cr (m sec-I) c; (m sec-1) AMP T (day) 
no. (day-') 

1 2ow -3.60 2.32 0. 630 1.59 
2 1760 -6.75 1.14 .353 283 
3 2260 -1.25 3.71 .896 1.12 
4 lboo -2 85 2.72 ,983 1.02 
5 2500 -4.25 2.04 .443  2.26 
6 3OOo -5.39 1.34 .a3 4.11 
7 2250 -3.07 2.71 .654 1.63 
8 2w) -4.63 2.60 . m2 1. 66 

A I O 3  km 
I I I 

1.00 -I 

0 l:o 210 4.0 

lo3 k m  

FIGURE 3.-Amplification rates as a function of Us and A. Shown 
are the amplification rates as a function of wavelength for case 
1 (solid line) and cases 2 and 3 (dashed lines). 

seen that the maximurn amplification increases and the 
wavelength of maximum growth rate decreases as the 
width of the central region is decreased. 

The final two cases determine the effect of changing the 
value of absolute vorticity in the northern and southern 
zones but keeping the remaining parameters the same as in 
case 1. The seventh case has Fs equal to the value of the 
Coriolis parameter f at 6" latitude. The final case has 
SN equal to the value of f a t  17' latitude. (Case 1 has 
Cs equal to the value of f a t  3" latitude and fN equal 
to the value of f a t  13" N.) The amplification rates for 
these two cases and for case 1 are plotted in figure 5. 
For some reason the form of the amplification curves for 
cases 7 and 8 are more similar to each other than they are 
to  the curve for case 1. The maximum growth rate occurs 
at  a wavelength of 2250 km for both of these cases, and 
the long waves are more unstable than for case 1.  The 
maximum growth rates do not vary significantly from that 
for case 1. 

In comparing figures 3,4, and 5, it is seen that the most 
significant changes jn the stability of disturbances are 
brought about by changing the total wind shear across 

- 
- 

FIGURE 4.-Amplification rates as a function of a and X. Shown are 
the amplification rates for case 1 (solid line) and cases 4, 5, and 6 
(dashed lines). 

',ool da-' 

.- 
0 
Y 0.50 

0 
0 l:o 2:o 3:O 4.0 

A io3 km 

FIGURE 5.-Amplification as a function of and 7 ~ .  Shown are 
the amplification rates as a function of wavelength for case 1 
solid line) and cases 7 and 8 (dashed lines). 

the central zone and by changing the width of this zone. 
Changing the value of the absolute vorticity in the northern 
and southern zones has only a secondary effect upon the 
amplification rates of disturbances. 

4. RESULTS FROM A CONTINUOUS MODEL 
One objection that could be raised concerning the results 

of the last section is that the discontinuities of absolute 
vorticity in the three-zone model might give rise to un- 
realistic gowth rates. In  this section we give some results 
obtained by numerical integration for a basic flow which 
has a continuous vorticity distribution associated with it. 
The results obtained complement the previous results and 
indicate that the three-zone model gives sufficiently accu- 
rate results for the present purposes. The basic flow con- 
sidered here will also be used to discuss the easterly wave 
model described by Yanai (196lb). 
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B=0.06910 
B=O 
case 1 

x 1 0 3 k k m  U rn/sec 

T (day) CT, (m s e d )  c i  (m sec-9 AMP (dart) 

-2.44 2.89 0.730 1.37 
-1.50 2.77 .753 1.33 
-3.50 2.32 .630 1.59 

FIGURE 6.--Disturbance stream function for B= 0.06910 with 
X=2000 km. The centers of cyclonic and anticyclonic vorticity 
are marked by C and A, The dashed line shows where the meri- 
dional velocity ZJ vanishes. On the right the solid line represents 
the basic flow for B= 0.06910, and the dashed line represents the 
basic flow for case 1 .  

The form of the basic flow chosen is 

where Uo, Ul, and L are constants which need to be 
specified. Using the beta-plane approximation and equa- 
tion (2) for the stream function, we find that +(y) must 
satisfy 

where p is again the Rossby beta parameter. The boundary 
conditions are that 4-0 as y--f 

The stability of this form of zonal wind profile has been 
studied by Michalke (1964) for the case @=O and by Lipps 
(1965) with p # O .  Using numerical integration, Michalke 
found that the largest growth rate occurs for a nondimen- 
sional wave number CY given by 

m . 

a=kL=0.4446. (9) 

If we assume that this wave number corresponds to a 
wavelength of 2000 km, we find that L=141.5 km. In order 
to have a basic flow that can be compared to case 1, we 
take the origin y=O a t  11.5' N.  and set L=141.5 km, 
U0=6.5 m sec-', and Ul= - 1.5 m sec-'. This basic flow is 
shown as the solid curve on the right) in figure 6. The 
dashed curve is the basic flow associated with case 1. It 
is seen that the general shapes of these basic wind profiles 
are similar, with the largest difference occurring south of 
10' N. 

Numerical calculations were made to find the growth 
rates of disturbances with a finite 8. The details of the 
calculations are given in the appendix. We mention 
here that equation (8) was nondimensionalized, split in to  
real and imaginary parts, and put in finite-diff erence form. 
A total of 41 grid points was used with the centre of the 
grid at  y=O. The grid-spacing was such that there were 
approximately 10 grid points in the interval - l<y/L 
< + 1.  On the northern and southern boundaries of this 
grid, the finite-diff erence solution was required to  match 

with analytic solutions which damped out as y+&w 
outside the finite-difference mesh. A system of trial and 
error was used in order to find the correct complex phase 
velocity c that allowed the boundary conditions to be met. 
The wave number k was held fixed during this process. 

The importance of @ can be understood with the help of 
the nondimensional parameter B defined by 

B = PLz/Uu,. (10) 

This is essentially the same parameter as the nondimen- 
sional beta defined in Lipps (1965). For the present 
problem, using the value of a t  11.5'N., U0=6.5 m 
sec-', and L=141.5 km we find B=0.06910. Thus it 
seems that the effect of P should be small; however, it 
will be shown that even so small a value for B has a 
significant stabilizing effect on the long waves. 

I n  table 4 it is seen that the effect of @ is small for a 
wavelength of 2000 km. In this table we compare the 
results for B=0.06910 as obtained by the present nu- 
merical calculations with the results of Michalke (B=O) 
and with case 1.  All these results are for a wavelength of 
2000 km. These results show that the presence of @ has a 
greater effect in causing the wave to progress westward 
due to  a more negative c, than in stabilizing the wave. 
Case 1 has the largest westward propagation. I n  com- 
parison with case 1, the continuous model is somewhat 
more unstable. For B=0.06910 a disturbance with 
X=2000 km will e-fold in 1.37 days, while for case 1 the 
value is 1.59 days. 

In  figure 6 we show the form of the disturbance stream 
function for p=0.06910 and X=2000 km. The centers of 
cyclonic and anticyclonic activity are marked by C and A, 
respectively. The latitude range is from 6.06O to  16.94' N., 
the range of the numerical integration. When this figure 
is compared with figure 2, it is seen that the disturbance 
stream function has a similar pattern for both cases. In  
particular, it is noted that for both cases the disturbances 
tilt southwest-northeast in the region of strong shear, 
giving a northward transfer of momentum. 

In  addition to the case discussed above, numerical 
calculations were carried out for other wavelengths with 
B=0.06910. These are shown in table 5. In this table, 
CY is the nondimensional wave number defined by a=kL. I n  
addition to the results obtained by numerical integration, 
the values of the marginally stable waves were obtained 
using the theory presented in Lipps (1965). The results in 
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TABLE 5.-Values obtained for B= 0.06910 

P h C, Ci AMP T 
(W (m sec-1) (m sec-1) (day-1) (day) 

0. 1875 4741 -7. 88 0 0 
0.3 2964 -3.37 3.34 0.612 1. 64 
. 4  2223 -2.64 2.93 ,715 1.40 
.4446 Zoo0 -2 44 2.69 .730 1.37 
. 5  1778 -2. n 2.38 .728 1.37 
.9994 890 -1.72 0 .  

table 5 for the amplification rates are plotted in figure 7 .  
In  this figure, these values are compared with the values 
for B=O (Michalke's data) and with case 1 of the three- 
zone model. The strong stabilizing effect of P on the long 
waves is very evident. For wavelengths of the order of 
2000 km or less, the stabilizing effect of p is negligible. 
The amplification versus wavelength curve for case 1 has 
a shape very similar to that for B=0.06910 but with 
uniformly smaller amplification rates. 

The above discussion and a comparison of figure 2 and 
figure 6 show that the results for case 1 of the three-zone 
model and for B=0.06910 with the present basic flow are 
similar. Thus, small changes in the form of the basic 
flow do not change the basic properties of the disturbances 
nor of the amplification as a function of wavelength. In  
particular, the discontinuities of absolute vorticity in 
the three-zone model do not appear to give rise to  unreal- 
istic results. Thus, we may conclude that the results of 
the three-zone model are sufficiently accurate for present 
purposes. 

One of the interesting characteristics of the basic flow 
defined in equation (7) is that its latitudional variation 
appears similar in form to the basic flow discussed by 
Yanai (1961b). Figure 8 is taken from his paper and shows 
his idealized model of an easterly wave. The major dif- 
ference between the horizontal variation of the basic 
flow shown in figure 8B and that shown in figure 6 is that 
the shear in Yanai's case apparently occurs over 5" to 6" 
of latitude instead of over 3" of latitude. Since this should 
approximately double the value of L, it is seen from equa- 
tion (10) that B should increase by a factor of 4. Thus, 
the stabilizing effect of p should play a significant role 
for Yanai's case. 

We now attempt roughly to simulate the form of basic 
flow discussed by Yanai. In  the northern part of his 
figure, the basic flow 5 seems to approach -11 m sec-l, 
and in the southern part it seems to approach -3 m sec-l. 
Thus, it follows that we should set U0=4 m sec-l and 
U1=--7 m sec-'. The value for L is harder to determine 
and is more important as it occurs as Lz in B. We take 
L=261.4 km. When we set p equal to its value at  10' N., 
we find B=0.3849. This value of B is half the value of 
B,, for which the flow becomes stable (Lipps 1965). 
It is considered that this value for L gives a reasonable 

' 
I !  CASE l'\. 

PIQURE 7.-Amplification as a function of wavelength for B=O, 
B=0.06910, and case 1. The solid line is B=0.06910 where the 
circles represent the data given in table 5. The values for B= 0 are 
taken from Michalke (1964). 
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FIGURE 8.-Model of an easterly waveas presented by Yanai (1961b). 
(A) the schematic vertical structure of an easterly wave; thin 
lines are isolines of vorticity (left), and the vertical distribution 
of the mean zonal wind at Eniwetok Island in July 1958 is 
shown on the right. (B) the schematic horizontal view of an 
easterly wave; dashed lines are isovels (left), and the latitudinal 
distribution of the mean zonal wind at the 85bmb level is shown 
on the right. 

shape to the basic flow profile. The origin y=O is put a t  
loo N. This basic flow is shown on the right in figure 9. 

In  order to obtain information on the growth rates of 
disturbances, we again use numerical integration. The 
same procedure of integration is used here as was used 
for the previous case, except that now we set B=0.3849. 
Also, it turns out that for sufficient accuracy we may sot 
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0 0.625 1.25 1.875 2.50 -10 -5 0 
X IO3 km U m/sec 

FIGURE 9.-The disturbance stream function for B= 0.3849 and 
X ~ 2 5 0 0  km (a2=0.4325).  The notation is the same as for figures 
2 and 6. The basic flow is shown on the right. 

TABLE 6.-Values obtained for B= 0.3849 

0.9598 1676 -7.80 0 0 
.6670 2011 -8.15 0.35 0.095 10.50 
.5000 2322 -8.45 .60 .140 7.14 
,4325 2497 -8.65 .66 .144 6.96 
,3610 2733 -a 96 .69 .136 7.34 
.2175 3520 -10.54 0 0 

the disturbance stream function equal to zero a t  the 
northern boundary. This is discussed in the appendix. 
I n  the present set of integrations, the northern boundary 
is at  20" N., and the southern boundary is a t  the Equator. 

The results are shown in table 6. The values for the 
marginal neutral waves are also given in this table. The 
numerical calculations were first carried out for a2=0.667, 
az=0.500, and a2=0.361. From these results, it was 
estimated that the wave with the largest growth rate 
should be for a2=0.4325. Finally, calculations were done 
for this value of a2. It is seen that the wavelength for 
this fastest growing wave is very nearly 2500 km and 
the e-folding time is very close to  7 days. The wave prop- 
agates westward with a phase speed of 8.65 m sec-'. 

The disturbance stream function for this wave is 
plotted in figure 9. It is seen that the wave tilts southwest- 
northeast in the region of strong basic flow shear. A small 
reverse tilt occurs farther north. This figure indicates 
qualitative agreement with Yanai's model of an easterly 
wave shown in figure 8B. I t  should be remembered that 
figure 8B shows the total flow, while the present figure 
shows only the disturbance flow. The strongest easterly 
winds should be to  the north of the cyclonic center C 
in figure 9, where the disturbance easterlies combine with 
the basic flow easterlies to give a maximum in wind 
velocity. The southwest-northeast tilt of the wave near 

the center C also agrees with the tilt of the easterly wave 
indicated in figure 8BI The disturbances presented in 
figure 2 for case 1 and in figure 6 for B=0.06910 show a 
similar qualitative agreement with Yanai's model. 

5. CONCLUDING REMARKS 

In  this investigation it is shown that the results are 
similar for case 1 of the three-zone model and for B= 
0.06910 with a hyperbolic tangent basic flow. The most 
unstable WavelengiRrs are near X=2000 km, and the e- 
folding time for these disturbances is about 1.5 days. 
For both of these cases the mean flow has a total wind 
shear of 13 m sec-I, which occurs over a distance of 
about 3' latitude. If mean flows with these characteristics 
exist in the atmosphere, the present results suggest that 
the barotropic transformation of kinetic energy from the 
basic flow to the disturbances should be dynamically 
important. However, it should be noted that for the 
mean flows thus far observed in the Tropics the shear 
seems to be weaker than this value and to occur over 
larger latitude belts. 

Results were obtained for B=0.3849, intended to 
simulate the mean flow given by Yanai (19616). This 
basic flow has a total wind shear of 8 m sec-', which 
occurs over a distance of nearly 6' latitude. The most 
unstable wavelength is near X=2500 km, and the e- 
folding time for this disturbance is close to 7 days. Similar 
results were obtained by Nitta and Yanai (1968) from 
their stability snalysis of mean zonal currents in the 
Marshall Islands. The value of X=2500 krn may be too 
large. Furthermore, it is doubtful that an e-folding time 
of 7 days represents an amplification rate large enough to 
allow a small disturbance to overcome the effects of 
friction in the atmosphere and to increase in size. 

Thus, the evidence is that the mean zonal winds 
obtained from mean monthly data in the Marshall Islands 
are only weakly unstable to  barotropic disturbances. 
However, the zonal winds may vary significantly over 
a month, and the disturbances may develop when the 
winds are more unstable than indicated by their monthly 
average; but it is admitted that this is only a speculation. 
As indicated by the data of Alpert (1946), the eastern 
Pacific is another area that may become barotropically 
unstable in the summer. This is an area where many 
disturbances have been observed by TIROS satellites, as 
discussed by Sadler (1963, 1964) and Fujita et al. (1969) 
In  the opinion of the present investigator, it is the eastern 
Pacific rather than the central Pacific where unstable 
barotropic disturbances are more likely to  form along a 
shear zone. 

APPENDIX 
NUMERICAL PROCEDURE FOR THE CONTINUOUS BASIC FLOW 

We discuss the numerical procedure used to  obtain 
finite-difference solutions of equation (8) subject to the 
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TABLE 7.-Data for B=O.S849 and a2= 0.4326 

Case C kc i  

If we put 

1 
2 
3 

-0.4133+0.1651i 0.1086 - .4135+ .1654i .lo88 
- .4143+ .1657i . l o w  

we find 

boundary conditions that $+O as y - f  a. The form of 
U / ( y )  is given by equation (7). First we nondimensionalize 
the problem, using the characteristic velocity Uo and the 
characteristic length L. We find 

x*=x/L, y*=y/L, t*=tUo/L, a=kL, 

and 

c * = 1 ,  c-u B=--, PL2 u*=- tanh y*, +*=- 4 (11) uo uo U J  

where the asterisks represent nondimensional quantities. 
This nondimensionnlization is very similar to that given 
by Lipps (1965). With the asterisks dropped, equation 
(8) becomes 

where U= - tanh y as indicated by (1 1). The boundary 
conditions remain +--to as y-f a. 

Equation (12) is solved numerically by using a 41-point 
g i d  mesh. The grid mesh is centered on the latitude for 
which y=O. Thus when grid points are labeled with the 
integer n, the grid point n=21 is placed at  y=O. The 
grid interval is given by 

Ay = 0.2 1274 

so that slightly less than 10 grid intervals cover the range 
-15 y< +1. The function tanh y has three-fourths of its 
total variation in this interval. The data shown in table 7 
indicate that this resolution is sufficient, as only little 
change occurs with a doubled resolution. 

Equation (12) is put in finite-difference form and 
separated into real and imaginary parts at  interior grid 
points (n=2-40). The standard centered finite-difference 
form is applied to approximate d2&/dy2. The term (B- 
dZU/dy2)/(  77-c) is calculated exactly at  each interior grid 
point. 

At the boundaries the finite-diff erence solution is 
matched with analytic solutions that damp out as 
y+=& m. To a high degree of approximation, the basic 
flow outside the grid mesh is given by its limiting values, 
Thus, for the southern boundary, we match the 
finite-difference solution to the solution of 

d24 B ---2++-- +=0. dY2 1-c 

where the plus sign is chosen so that -0 as y+- a. 
To find the real and imaginary parts of p is straight- 
forward but involves tedious algebra. 

p= Re”, c=cr+ici, 

and 

R=(F2+8)1/4, k 0 . 5  tan-’ (GIF). (16) 

At the boundary grid point n = l ,  we are allowed to 
give cpl an arbitrary value. We find from equation (14) 
that 

42/+1=e*’*Y (17) 

so that given cpl, the value & may be obtained. Next, 
43, &, . . . , t$41 are determined by the finite-difference 
form of (12). Finally, the computed value for #141/440 is 
compared with the required value of 441/440. The required 
value of 441/440 is obtained from the analytic solution 
north of the finite-difference grid, which vanishes as y 3  
+a. This analytic solution is obtained in a manner 
similar to  that discussed above. 

While holding B and LY fixed, the complex c is varied 
until the two values of t+41/440 agree to sufficient accuracy. 
Several runs of the program must be computed in order 
to get successively better agreement. Once agreement is 
close enough, linear extrapolation may be applied using 
the analytic nature of 441/440 in the complex c plane. At 
this point convergence is rapid. Results gave values of c 
that were accurate to the fourth decimal place as far as 
the boundary conditions are concerned. 

The above procedure was used for all values of B 
associated with B=0.06910. For B=0.3849 it was SUE- 
cient to set qj41=0, although it was still necessary to use 
the correct condition at  the southern boundary for good 
accuracy. The solutions for which (b41=0 were obtained 
by a similar process of trial and error and linear extrapo- 
lation as discussed above. 

In  table 7, we show three cases to indicate the accuracy 
of the present numerical procedure. All three cases are 
for B=0.3849 and d=0.4325, so that we are considering 
the fastest growing wave for Yanai’s case. The wave- 
length is 2497 km. The data are in nondimensional 
form. The h s t  case has 41 grid points and 4 set to zero 
at the northern boundary. The second case has the 
correct northern boundary condition and 41 grid points. 
The final case has doubled the resolution (81 grid points) 
and has the correct northern boundary condition. It 
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is seen that the agreement is excellent. Another check 
on the numerical model was to  calculate the wave num- 
bers of the marginally stable waves for B=0.3849, which 
were previously obtained analytically by Lipps (1965). 
The numerical values and analytical values agree to the 
same accuracy as the data presented in table 7. A similar 
accuracy should be expected for the B=0.06910 
calculations. 

Finally, it is noted that the disturbance stream function 
shown in figure 9 was obtained from data given by case 2 
with the correct northern boundary condition. The 
differences between the stream function data for cases 
1 and 2 are negligible and show up only near thenorthern 
boundary. 
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